

Seat No.

1

HB-003-1016003

B. Sc. (Sem. VI) Examination April - 2023 Mathematics : Paper - 10 (A) (Optimization & Numerical Analysis - II)

Faculty Code : 003 Subject Code : 1016003

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instruction: Answer all five questions.

(a) Answer the following questions : 4 Explain in your words : Objective function with respect (1)to Linear Programming Problems. (2)Explain in your words : Hyperplane in E^n . (3) Explain in your words : Convex set. (4) Explain in your words : Convex Hull. (b) Answer any one : 2 Write matrix form of Linear Programming Problems. (1)Explain in your words : Slack variables and Surplus (2)variables. Answer any one : 3 (c) Draw a sketch of the graph of following LPP : (1)Maximize $Z = 5x_1 + 7x_2$ Subject to $x_1 + x_2 \le 4$, $3x_1 + 8x_2 \le 24$, $10x_1 + 7x_2 \le 35$, $x_1, x_2 \ge 0$ (2)Explain steps of Graphical method to solve Linear Programming Problems. 5 Answer any one : (d)Explain Simplex method to solve Linear Programming (1)Problems. Explain Big-M method to solve Linear Programming (2)Problems.

1

[Contd...

2	(a)	Answer the following questions :			
		(1)	Explain in your words : NWCM in one line.		
		(2)	Explain in your words : LCM in one line.		
		(3)	Explain in your words : VAM in one line.		
		(4)	Give the name of the method to solve assignment problems.		
	(b)	Answer any one :			
		(1)	What is mathematical form of transportation problem?		
		(2)	Explain Matrix Minima Method.		
	(c)	Ans	wer any one :	3	
		(1)	Write three steps of NWCM.		
		(2)	Write six relationships between primal and dual LP problems.		
	(d)	Answer any one :			
3		(1)	Explain penalty method with an example.		
		(2)	Obtain the dual problem of the following primal LP problem :		
			Minimize $Z_x = 5x_1 + 2x_2 + x_3$		
			subject to		
			$x_1 - 3x_2 + 4x_3 = 5, \ x_1 - 2x_2 + 0x_3 \le 3, \ 0x_1 + 2x_2 - x_3 \ge 3$: 4	
			and $x_1, x_2 \ge 0, x_3$ is unrestricted.		
3	(a)	Ans	wer the following questions :	4	
		(1)	Write Gauss forward interpolation formula.		
		(2)	Write Gauss backward interpolation formula.		
		(3)	Write Sterling formula.		
		(4)	Write Bessel's formula.		
	(b)	Answer any one :			
		(1)	Write the formula which is used for inverse interpolation.		
		(2)	Write a relation of forward difference operator in terms of central difference operator and shifting operator and then write central difference operator in terms of shifting operator and forward difference operator.		

HB-003-1016003]

[Contd...

- (c) Answer any one :
 - (1) Obtain Laplace-Everett's formula.
 - (2) If $f(x) = x^3$ then find f(1, 3, 5, 7).
- (d) Answer any one :
 - (1) Use Lagrange's formula to find the form of f(x) given

x	0	2	3	6
f(x)	648	704	729	792

- (2) Obtain the formula to interpolate the value of y for 0 < P < 1.
- 4 (a) Answer the following questions :
 - (1) What is numerical differentiation?
 - (2) Fill in the blank :

To find
$$\int_{a}^{b} y dx$$
 called _____

- (3) Write Trapezoidal rule.
- (4) Write Simpson's 1/3 rule.
- (b) Answer any one :
 - (1) Obtain central difference table for the following data :

x	60	75	90	105	120
$f(\mathbf{x})$	28.2	38.2	43.2	40.9	37.7

- (2) Find the value of $\int_0^{10} \frac{dx}{1+x^2}$ by trapezoidal rule.
- (c) Answer any one :
 - (1) Explain Trapezoidal rule.
 - (2) Check : $D^3 = \frac{1}{h^3} \left[\Delta^3 \frac{3}{2} \Delta^4 + \frac{7}{4} \Delta^5 + \dots \right]$ or not.
- (d) Answer any **one** :
 - (1) Explain Simpson's 3/8 rule.
 - (2) Obtain derivatives using Stirling's formula.

3

HB-003-1016003]

[Contd...

2

4

5

3

5

5 (a) Answer the following questions :

- (1) Write Range's formula for K_0 .
- (2) Write Range Kutta's formula to find K_0 .
- (3) Write Taylor's formula to solve ordinary differential equation.
- (4) Write Picard's formula to solve ordinary differential equation.
- (b) Answer any **one** :
 - (1) Write two difference between Gauss-Backward interpolation and Lagrange's interpolation.

(2) Using Picard's method solve
$$\frac{dy}{dx} = x + y$$
, solve first

approximation. Initial condition is y(0) = 1.

- (c) Answer any **one** :
 - (1) Explain Range's method.
 - (2) Explain Range Kutta method.

(d) Answer any one :

(1) Solve
$$\frac{dy}{dx} = 2e^x - y$$
, $y(0.1) = 2.010$, $y(0.2) = 2.040$,

y(0.3) = 2.090. Find y(0.4) correct to three decimal places applying Milne's predictor method.

(2) Explain Euler's method to solve ordinary differential equation.

2

3

5

4